Örten fonksiyon, matematikte, X kümesinden Y kümesine tanımlı bir f fonksiyonunda, X kümesindeki her x elemanı için Y kümesindeki y elemanlarının tamamının olduğu fonksiyon türü. Tanım kümesindeki elemanların tamamı, değer kümesindeki elemanların tamamıyla eşleştiği örten fonksiyonlarda, değer kümesi ile görüntü kümesi birbirine eşittir.

X kümesinden Y kümesine tanımlı örten bir f fonksiyonunun diyagram şeklindeki gösterimi.

Fransızcada "örtenlik" anlamına gelen surjection terimi, injection ("birebirlik") ve bijection ("birebir örtenlik") terimleriyle birlikte Nicolas Bourbaki tarafından ortaya atılmıştır.[1]

Tanımlama

değiştir

Örten fonksiyon, tanım kümesindeki elemanların tamamının değer kümesindeki elemanların tamamıyla eşleştiği fonksiyonlardır. Bu durumda fonksiyonun görüntü kümesi, değer kümesine eşit olur.[2] Fonksiyonun, X tanım kümesindeki her bir x elemanının, Y değer kümesinde en az bir karşılığı vardır ve karşılığı olmayan bir y elemanı bulunmamaktadır. Sembolik olarak bu durum şu şekilde gösterilir:

  şeklinde tanımlı   fonksiyonunun örten olması için
  olması gerekmektedir.

Örten fonksiyonlar zaman zaman, sağa bakan iki uçlu ok kullanılarak f : XY şeklinde de gösterilebilmektedir.[3]

Kaynakça

değiştir
  1. ^ Miller, Jeff (3 Eylül 2016). "Earliest Uses of Some of the Words of Mathematics" (İngilizce). 7 Mayıs 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 8 Ocak 2017. 
  2. ^ Vivaldi, Franco (2001). Experimental Mathematics with Maple (İngilizce). CRC Press. s. 49. ISBN 1584882336. 9 Ocak 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 8 Ocak 2017. 
  3. ^ Gorodentsev, Alexey L. (2016). Algebra I: Textbook for Students of Mathematics (İngilizce). Springer. s. 2. ISBN 3319452851. 9 Ocak 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 8 Ocak 2017.