Dosya:Surface integral illustration.svg

Tam çözünürlük (SVG dosyası, sözde 512 × 348 piksel, dosya boyutu: 20 KB)


Özet

Açıklama
English: The definition of surface integral relies on splitting the surface into small surface elements. Figure 1: The definition of surface integral relies on splitting the surface into small surface elements. Each element is associated with a vector dS of magnitude equal to the area of the element and with direction normal to the element and pointing outward.
Tarih 11 Aralık 2014
Kaynak Own work based on: Surface integral illustration.png & SVG - Export of figures
Yazar McMetrox
İzin
(Bu dosyanın tekrar kullanımı)
Ben, bu işin telif sahibi, burada işi aşağıdaki lisans altında yayımlıyorum:
Creative Commons CC-Zero Bu dosya Creative Commons Evrensel Kamu Malı İthafı altındadır.
Bu çalışmayı oluşturan kişi bu senet ile eser hakkında tüm dünya çapında telif hakkı yasaları kapsamında, yasalar tarafından izin verilen ölçülerde ve diğer benzer tüm haklarından feragat etmiş ve kamu malı olarak nitelendirmiştir. Siz bu çalışmayı ve eseri hiç bir izin almadan ticari amaçlar da dahil olmak üzere kopyalayabilir, değiştirebilir ve serbestçe dağıtabilirsiniz.

Diğer sürümler
png
SVG gelişimi
InfoField
 
Bu SVG kaynak kodu geçerlidir.
 
Bu vektörel grafik MATLAB ile oluşturuldu.
Kaynak kodu
InfoField

MATLAB code

% An illustration of the surface integral.
% It shows how a surface is split into surface elements.
 
function main()
 
% the function giving the surface and its gradient
   f=inline('10-(x.^2+y.^2)/15', 'x', 'y');
 
   BoxSize=5; % surface dimensions are 2*BoxSize x 2*BoxSize
   M = 10; % M x M = the number of surface elements into which to split the surface
   N=10;  % N x N = number of points in each surface element
   spacing = 0.1; % spacing between surface elements
   H=2*BoxSize/(M-1); % size of each surface element
   gridsize=H/N;      % distance between points on a surface element 
 
   figure(1); clf; hold on; axis equal; axis off;
 
   for i=1:(M-1)
	  for j=1:(M-1)
		 Lx = -BoxSize + (i-1)*H+spacing; Ux = -BoxSize + (i  )*H-spacing;
		 Ly = -BoxSize + (j-1)*H+spacing; Uy = -BoxSize + (j  )*H-spacing;
 
%        calc the surface element
		 XX=Lx:gridsize:Ux; 
		 YY=Ly:gridsize:Uy;
		 [X, Y]=meshgrid(XX, YY);
		 Z=f(X, Y);
 
%        plot the surface element
		 surf(X, Y, Z, 'FaceColor','red', 'EdgeColor','none', ...
			  'AmbientStrength', 0.3, 'SpecularStrength', 1, 'DiffuseStrength', 0.8);
 
	  end
   end
 
 
   view (-18, 40);                     % viewing angle 
   %camlight headlight; lighting phong; % make nice lightning 
 
%  save to file
   plot2svg('Surface_integral_illustration.svg');

Altyazılar

Bu dosyanın temsil ettiği şeyin tek satırlık açıklamasını ekleyin.
surface integral

Bu dosyada gösterilen öğeler

betimlenen

11 Aralık 2014

Dosya geçmişi

Dosyanın herhangi bir zamandaki hâli için ilgili tarih/saat kısmına tıklayın.

Tarih/SaatKüçük resimBoyutlarKullanıcıYorum
güncel00.36, 12 Aralık 201400.36, 12 Aralık 2014 tarihindeki sürümün küçültülmüş hâli512 × 348 (20 KB)McMetroxReduced file size
23.50, 11 Aralık 201423.50, 11 Aralık 2014 tarihindeki sürümün küçültülmüş hâli512 × 348 (39 KB)McMetrox{{Information |Description ={{en|1=The definition of surface integral relies on splitting the surface into small surface elements. Figure 1: The definition of surface integral relies on splitting the surface into small surface elements. Each element...

Bu görüntü dosyasına bağlantısı olan sayfalar:

Küresel dosya kullanımı

Aşağıdaki diğer vikiler bu dosyayı kullanır:

Meta veri