Varyans hesaplanması için algoritmalar

İstatistiksel ölçülerinin bilgisayar ile yapılan hesaplanmalarında varyans hesaplanması için kullanılan algoritmalar pratik sonuçlar elde edilmesinde önemli rol oynamaktadırlar. Varyansın hesaplanması için işe yarar bilgisayar algoritmalarının tasarlanmasında ana sorun varyans formüllerinin veri kare toplamlarının hesaplanmasını gerektirmesindedir. Bu işlem yapılırken sayısal kararsızlık problemleri ve özellikle büyük veri değerleri bulunuyorsa aritmetik taşmalar problemleri ortaya çıkması çok muhtemeldir.

Ancak, 2014 yılında yayınlanan "İstatistikte Altın Oran" adlı bir kitapta, kareler ortalamasının karekökü operatörü yerine, üstel bir işlem içermeyen, sadece dört işlem ve sınırlı toplama operatörü ile hesaplanabilen bir sapma metodolojisi tanımlanmıştır. Tanımlanan bu sapma'nın en dikkat çekici özelliği, ortalama'nın sağı ve solu için, birbirinden bağımsız iki ayrı sapma üretmesidir.[1]

I. Naif algoritma

değiştir

Tüm bir anakütle veri dizisi için varyansın hesaplanması için formül şudur:

 

Bir sonsuz olmayan n gözlem hacminde bir örneklem veri dizisi kullanarak anakütle varyansının bir yansız kestirim değerini bulmak için formül şöyle ifade edilir:

 

Bu formüller kullanılarak varyans kestirimi hesaplamak için bir naif algoritma için szde kod şöyle verilir:

n = 0
toplam = 0
toplam_kare = 0

for veri olan her x:
  n = n + 1
  toplam = toplam + x
  toplam_kare = toplam_kare + x*x
end for

ortalama = toplam/n
varyans = (toplam_kare - toplam*ortalama)/(n - 1)

Bu algoritma bir sonlu anakutle verileri için varyansin hesaplanmasına hemen adapte edilebilir: en son satırda ki n - 1 ile bolum yapılacağına n ile bolum yapılır.

toplam_kare ve toplam * ortalama birbirine hemen yakın sayılar olabilir. Bu nedenle sonucun kesinliği hesaplamada kullanılan kayan noktali aritmetiğin doğal kesinliğinden daha az olabilir. Eğer varyans değeri elde edilen veri toplamına karşıt olarak daha küçük ise, bu sorun daha da şiddetle ortaya çıkar.

II. İki-geçişli algoritma

değiştir

Varyans için değişik bir formül kullanan diğer bir yaklaşım şu sözde kod ile verilmiştir:

n = 0
toplam1 = 0
for veri olan her x:
  n = n + 1
  toplam1 = toplam1 + x
end for
ortalama = toplam1/n

toplam2 = 0
for veri olan her x:
  toplam2 = toplam2 + (x - ortalama)^2
end for
varyans = toplam2/(n - 1)

IIa. Düzeltilmiş toplam şekli

değiştir

Yukarıda verilen algoritmanın düzeltilmiş toplam şekli şöyle verilir:

n = 0
toplam1 = 0
for veri olan her x:
  n = n + 1
  toplam1 = toplam1 + x
end for
ortalama = toplam1/n

toplam2 = 0
toplamc = 0
for veri olan her x:
  toplam2 = toplam2 + (x - ortalama)^2
  toplamc = toplamc + (x - ortalama)
end for
varyans = (toplam2 - toplamc^2/n)/(n - 1)

III. On-line algoritması

değiştir
 
 
 

Gereken yenileştirme için bulunabilecek daha uygun bir işlemin (cari) ortalamadan farkların karelerinin toplamını bulmak olduğu anlaşılmıştır; bu değer   olup burada   olarak gösterilmektedir:

 
 
 

Sayısal olarak daha kararlı bir algoritma aşağıda verilmiştir. Bu algoritma ortalama hesaplamak için kullanılmak niyetiyle Knuth (1998) tarafından verilmiş[2] ve orada ilk defa Welford(1962) tarafından ortaya atıldığı bildirilmiştir.[3]

n = 0
ortalama = 0
M2 = 0

for veri olan her x:
  n = n + 1
  delta = x - ortalama
  ortalama = ortalama + delta/n
  M2 = M2 + delta*(x - ortalama)   // Bu terim ortalama için yeni değeri kullanır
end for

varyans_n = M2/n
varyans = M2/(n - 1)


IV. Ağırlıklı küçük artışlı algoritma

değiştir

Eğer gözlemler için değişik ağırlıklar verilmişse, West (1979) şu küçük artışlı algoritmanın kullanılabileceğini bildirmiştir:[4]

n = 0
for veri olan her x:
  if n=0 then 
      n = 1
      ortalama = x
      S = 0
      toplamagırlık = agırlık
  else
      n = n + 1
      temp = agırlık + toplamagırlık
      S = S + sumweight*agırlık*(x-ortalama)^2 / temp
      ortalama = ortalama + (x-ortalama)*agırlık / temp
      toplamagırlık = temp
  end if
end for
Varyans = S * n / ((n-1)*toplamagırlık)  // eğer veri dizisi anakütle içinse n/(n-1) kullanılmaz.

V. Paralel algoritma

değiştir

Chan, Golub ve LeVeque (1979) hazırladıkları bir raporda yukarıda verilen III. On-line Algoritmasının bir örneklem olan  i herhangi iki tane   ve   setlerine ayırmak için işleme konabilen bir algoritmanın özel bir hali olduğunu bildirmişlerdir:

 
 
 .

Bu bazı hallerde daha kullanışlı olabilmektedir. Örneğin girdinin ayrılabilir parçalarına çoklu kompüter işlem birimlerinin kullanılması imkânını sağlayabilir.

V.a. Üst seviyede istatistikler

değiştir

Örneklem verileri için üst seviyede istatistikler olan çarpıklık ve basıklık ölçülerini bulmak için Terriberry Chen'in üçüncü ve dördüncü merkezsel moment bulmak için ortaya attığı formülü daha uygun bir şekle şöyle değiştirmiştir.::[5] 

 

Burada yine,   verilerin ortalamadan farklarının üstel değerlerinin toplamlarıdır; yani   olur. Bu değerler kullanılarak çarpıklık ve basıklık ölçüleri şöyle bulunur:

  : çarpıklık,
  : basıklık.

Küçük artışlı hallerde (yani  ), bu şöyle basitleştirilebilir:

 
 
 
 
 

Burada dikkati çeken nokta,   değerini korumak suretiyle, sadece tek bir bölme işleminin gerekli olması ve böylece çok az bir ekstra maliyetle daha yüksek istatistiksel ölçüler hesaplanabilmesidir.

Kullanılan kompüterde bütün "floating" nokta operasyonlarının IEEE 754 çifte-hassiyetli aritmetik ile yapıldığı varsayılsın. Sonsuz büyüklükte bir anakütleden n=5 büyüklüğünde bir örneklem olarak

4, 7, 13, 16

veri seti elde edildiğini düşünelim. Bu örneklem için örneklem ortalaması 10 olur ve yanlı olmayan anakütle varyans kestirimi 30dur. Hem "I. naif Algoritma" hem de "II. iki geçişli Algoritma" bu değerleri doğru olarak hesaplamaktadırlar.

Şimdi örnekleme olarak şu veri setini alalım:

 ,  ,  ,  

Bu örneklemin de, birinci örneklem gibi ayni varyans kestirimine sahip olması gerekir. "II. Algoritma" bu varyansı doğru olarak hesaplamaktadır. Fakat "I. Algoritma" sonuç olarak tam 30 yerine 29.333333333333332 sonucu verir. Bu dakiklik kaybının belki kabul edilebilir tolerans olduğu ve "I. Algoritma" kullanılmasının nispeten önemsiz bir hata doğurduğu söylenebilir.

Fakat bu "I. Algoritma" hesaplamasında çok önemli bir eksiklik ve hataya işaret etmektedir. Bu sefer örneklem olarak şunu alalım:

 ,  ,  ,  

Yine "II. Algoritma" doğru anakütle varyans kestirimi olarak 30 gösterir. Ama "I. Algoritma" kullanılınca elde edilen kestirim hesabı -170.66666666666666 olarak verilir. Bu çok önemli ve yapılmaması gereken bir hatadır; çünkü kavram olarak tanımlamayla varyans değerinin hiçbir zaman negatif olmaması gerekir.

Ayrıca bakınız

değiştir

Kaynakça

değiştir
  1. ^ Mehmet Güven GÜNVER, Prof. Dr. Mustafa Şükrü ŞENOCAK, Doç Dr. Suphi VEHİD, İstatistikte Altın Oran, Türkmen Kitabevi, 2014, ISBN : 9786054749409
  2. ^ Knuth,D.E. (1998). The Art of Computer Programming, V.2: Seminumerical Algorithms, 3. ed., p. 232. Boston: Addison-Wesley.
  3. ^ Welford,B.P. (1962). "Note on a method for calculating corrected sums of squares and products". Technometrics C.4 No.3 say.419–420. [1]
  4. ^ D. H. D. West (1979). Communications of the ACM, 22, 9, 532-535: Updating Mean and Variance Estimates: An Improved Method
  5. ^ Terriberry,T.B. (2007), Computing Higher-Order Moments Online url=http://people.xiph.org/~tterribe/notes/homs.html 23 Nisan 2014 tarihinde Wayback Machine sitesinde arşivlendi.

Dış bağlantılar

değiştir