Kurt Gödel

Avusturyalı-Amerikalı matematikçi (1906 – 1978)

Kurt Gödel (28 Nisan 1906 - 14 Ocak 1978), Avusturyalı-Amerikalı mantıkçı, matematikçi ve matematik felsefecisidir. Kendi ismiyle anılan Gödel'in Eksiklik Teoremi ile tanınır.[1] Aristoteles'ten bu yana en büyük mantıkçılardan biri olarak kabul edilir.[1]

Kurt Gödel
DoğumKurt Friedrich Gödel
28 Nisan 1906(1906-04-28)
Brünn, Avusturya-Macaristan İmparatorluğu
Ölüm14 Ocak 1978 (71 yaşında)
Princeton, New Jersey, ABD
Ölüm sebebiBeslenme Eksikliği
MilliyetAvusturyalı
VatandaşlıkAvusturya Çekoslovak Alman Amerikan
Ödüller1951 Albert Einstein Ödülü, 1974 National Medal of Science
Kariyeri
DalıMatematik
Çalıştığı kurumlarViyana üniversitesi, Institute for Advanced Study
İmza

Teoremlerinde tam sayı aritmetiğini içerecek kadar karmaşık herhangi bir sistemin içinde, sistemin aksiyomlarından yola çıkarak doğruluğu veya yanlışlığı kanıtlanamayacak önermeler bulunacağını ispatlamıştır. Bunun için ise Gödel numaralandırması ismi verilen bir metot geliştirmiştir. Meşhur teoremini Viyana Üniversitesindeki doktora çalışması sırasında 1931 yılında ispatlamış, bununla 20. yüzyıl matematiğinin yönünü değiştirmiştir.

1940'larda Princeton Üniversitesi İleri Araştırmalar Enstitüsünde Kurt Gödel, Einstein’ın kütleçekimi alanı denklemlerine, ekseni etrafında dönen bir evreni tanımlayan bir çözüm getirdi. Evrenin dönüşü ışığı (ve dolayısıyla cisimler arsındaki nedensellik bağlarını da) birlikte sürükleyecekti. Dolayısıyla maddi cisimde, ışık hızını aşmaya gerek kalmaksızın uzayda ve zamanda kapalı bir halka çizecekti. Gödel’in modeli, zamanda geriye gitmenin görelilik kuramınca yasaklanmadığını ortaya koydu. Kurt Gödel, Einstein'ın alan denklemlerini kullanarak, bir evren modeli tasarladı. Tasarım Einstein'ınkine benziyordu ama Gödel'in yaklaşımında kozmolojik sabitlere negatif bir değer veriliyordu. Einstein da kuramının bazı durumlarda geçmişe yolculuğa izin verdiği düşüncesinden rahatsızlık duyduğunu ifade etmiştir. Yalnız Gödel'in bu modeli gökbilimcilerin gözlemlediği kütleçekimsel kızıla kayma tarafından yanlışlanmaktadır.

İçine kapanık bir kişiliği olan Gödel, son yıllarında zehirleneceği paranoyasına kapılarak hiçbir şey yememeye başlamış, bunun sonucunda beslenme eksikliğinden 14 Ocak 1978'de Princeton'da ölü bulunduğunda cenin pozisyonundaydı ve sadece 29.5 kiloydu.

Yaşamı

değiştir

Çocukluğu

değiştir

Kurt Friedrich Gödel 28 Nisan, 1906'da Brünn, Moravya'da etnik Alman ailesinin; bir tekstil firmasında yönetici olan Rudolf Gödel ve Handschuh doğumlu Marianne Gödel, çocuğu olarak dünyaya geldi. Doğduğu zamanda, şehirde konuşulan diller içinde Alman dili daha yaygındı ve bu aynı zamanda anne ve babasının diliydi.

Gödel, I. Dünya Savaşı sonunda Avusturya-Macaristan İmparatorluğu yıkılınca, 12 yaşında Çekoslovak vatandaşlığına geçmiş oldu. Gödel, daha sonra biyografisini yazan John D. Dawson'a bu zamanlarda kendini "Çekoslovakya'daki Avusturyalı sürgün" ("ein österreichischer Verbannter in Tschechoslowakien") gibi hissettiğini söylemiştir. Hiçbir zaman Çekçe konuşamadı ve okulda öğrenmeyi reddetti. 23 yaşında kendi seçimiyle Avusturya vatandaşı oldu. Nazi Almanyası Avusturya'yı istila edince, Gödel 32 yaşında doğrudan Alman vatandaşı olmuş oldu. II. Dünya Savaşı sonunda, Gödel, 42 yaşında Amerikan vatandaşlığına kabul edildi.

Gödel, gençliğinde, dinmek bilmeyen soruları yüzünden ailesi içinde Der Herr Warum ("Bay Neden") olarak anılırdı.

Abisi Rudolf'a göre, Kurt 6 veya 7 yaşında, ateşli romatizma hastalığına yakalandı; tamamen iyileşti, ama hayatının geri kalanında kalıcı bir kalp rahatsızlığına sahip olduğu konusunda kendini inandırdı.

Gödel, eğitim öğretimin Almanca yapıldığı ilkokul ve ortaokulunu 1923 yılında dereceyle bitirdi. Kurt, ilk olarak dil konusunda üstün olmasına rağmen daha sonraları matematik ve tarihle daha çok ilgilenmeye başladı. Matematiğe olan ilgisi, 1920 yılında abisi Rudolf'un (1902 doğumlu) tıp eğitimi görmek için Viyana 'ya, Viyana Üniversitesi (UV) 'ne gitmesiyle arttı. Gençliği boyunca, Kurt, Gabelsberger stenografisi'ni, Goethe'nin Renklerin Teorisi ni, Isaac Newton'nun eleştirilerini ve Immanuel Kant 'ın yazdıklarını okudu.

Viyana'da öğrenim

değiştir

Kurt, 18 yaşındayken, abisi Rudolf'a katılıp Viyana Üniversitesi'ne girdi. O zamanda zaten üniversite seviyesinde matematik bilgisine sahipti. İlk başta teorik fizik alanında öğrenim görmeye niyetli olsa da Kurt aynı zamanda matematik ve felsefe derslerine katılıyordu. Kant'ın Metaphysische Anfangsgründe der Naturwissenschaft adlı eserini okudu ve Moritz Schlick, Hans Hahn ve Rudolf Carnap'ın içinde olduğu Viyana Çevresi'ne katıldı. Kurt daha sonraları sayı teorisi alanında çalıştı ama Moritz Schlick tarafından Bertrand Russell'in Introduction to Mathematical Philosophy (Matematiksel Felsefeye Giriş) kitabı hakkında verilen bir seminere katıldıktan sonra matematiksel mantık alanıyla ilgilenmeye başladı.

David Hilbert tarafından Bologna'da matematiksel sistemlerin eksiksizliği ve tutarlılığı üzerine verilen bir seminere katılması Gödel'in hayatını önemli ölçüde etkileyecekti.

1928 yılında Hilbert ve Wilhelm Ackermann Grundzüge der theoretischen Logik (Teorik Mantığın İlkeleri) eserini yayımladı. Bu eser, eksiksizlik probleminin bulunduğu alan olan birinci seviye mantık alanına bir giriş niteliğindeydi:Bir biçimsel sistemin belitleri sistemin tüm modellerinde doğru olan deyimleri türetmek için yeterli midir?. Bu konu Gödel'in doktora çalışması için seçtiği konuydu.

1929 yılında, Gödel 23 yaşındayken, doktora tez ini Hans Hahn'ın danışmanlığı altında tamamladı. Gödel, doktora tezinde, bugün bu sonuç Gödel eksiksizlik teoremi adıyla anılıyor, birinci derece kalkülüs önermeleri nin eksiksizliğini gösterdi. 1930 yılında doktora derecesini aldı. Tezi ilave çalışmalarla birlikte Viyana Bilim Akademisi'nde yayımlandı.

Viyana'da çalışma hayatı

değiştir

1931 yılında, Gödel "Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme." adıyla meşhur eksiklik teoremini yayımladı. Bu makalesinde, Gödel doğal sayılar ın aritmetiğini tanımlamaya yetecek kadar güçlü herhangi bir hesaplanabilir belitsel sistem (ör:Peano belitleri ve ZFC) için şunların doğruluğunu kanıtlamıştır:

  1. Sistem aynı zamanda hem tutarlı hem de eksiksiz olamaz. (Bu genellikle eksliklik teoremi olarak bilinir.)
  2. Belitlerin tutarlılığı sistem içerisinde kanıtlanamaz.

Bu teoremler, yarım yüzyıl süren ve Frege 'nin çalışmalarıyla başlayan, Principia Mathematica ve Hilbert'in formalizmi ile doruğa ulaşan, tüm matematik için yeterli bir belitler kümesi bulma çalışmalarını sona erdirdi. Eksiklik teoremleri aynı zamanda tüm matematiksel soruların hesaplanabilir olmadığını da gösterdi.

Aslında eksiklik teoreminin kalbinde yatan fikir oldukça basittir. Gödel bir formel sistemde "bu önerme ispatlanabilir değildir" şeklinde bir önerme kurdu. Eğer önerme ispatlanabilirse; yanlıştır bu da ispatlanabilir önermelerin her zaman doğru olduğu gerçeği ile çelişir. Bu yüzden, her zaman en az bir tane doğru olan fakat ispatlanamayan önerme vardır.

Önemli yayınları

değiştir

Türkçe çeviri:

  • Gödel, K. (2004) Cantor'un süreklilik problemi nedir? [1964]. Bekir S. Gür (Ed.), içinde (s. 217-238), Kadim yayınları, 2. baskı.

Almanca:

  • 1931, "Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme," Monatshefte für Mathematik und Physik 38: 173-98.

İngilizce:

  • 1940. The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory. Princeton University Press.
  • 1947. "What is Cantor's continuum problem?" The American Mathematical Monthly 54: 515-25. Revised version in Paul Benacerraf and Hilary Putnam, eds., 1984 (1964). Philosophy of Mathematics: Selected Readings. Cambridge Univ. Press: 470-85.

İngilizce çeviri:

  • Kurt Godel, 1992. On Formally Undecidable Propositions Of Principia Mathematica And Related Systems, tr. B. Meltzer, with a comprehensive introduction by Richard Braithwaite. Dover reprint of the 1962 Basic Books edition.
  • Jean van Heijenoort, 1967. A Source Book in Mathematical Logic, 1879-1931. Harvard Univ. Press.
    • 1930. "The completeness of the axioms of the functional calculus of logic," 582-91.
    • 1930. "Some metamathematical results on completeness and consistency," 595-96. Abstract to (1931).
    • 1931. "On formally undecidable propositions of Principia Mathematica and related systems," 596-616.
    • 1931a. "On completeness and consistency," 616-17.
  • Collected Works: Volume I: Publications 1929-1936 ISBN 0-19-503964-5, Volume II: Publications 1938-1974 ISBN 0-19-503972-6, Volume III: Unpublished Essays and Lectures ISBN 0-19-507255-3, Volume IV: Correspondence, A-G ISBN 0-19-850073-4. Publisher: Oxford University Press, USA

Dış bağlantılar

değiştir

Kaynakça

değiştir
  1. ^ a b "Kurt Gödel | American mathematician | Britannica". www.britannica.com (İngilizce). 13 Haziran 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 12 Nisan 2022.